Wednesday, December 28, 2011

Sample Problem: Solving Algebraic Equations

Example:

  • a + 1 = 3
    • a = 3 - 1
      • If you transpose a certain value to the other side of the equation, it "becomes the opposite of the original," so plus becomes minus, minus becomes plus, multiply becomes divide and vice versa.
    • a = 2
    • 2 + 1 = 3
    • 3 = 3
    • a = 2
Sample Problems:
  • Solve for a:
    • 5 + a = 7
    • a - 13 = 4
    • 3a  = 9
    • a/2 = 10
  • Solve for b:
    •  9 + b = 15
    • b - 2 = 1
    • 2b = 2
    • b/3 = 4
  • Solve for c:
    • 6 + c = 13
    • c - 3 = 2
    • 2c = 20
    • 6/c = 3
  • Solve for x: 
    • 2 + x = 24
    • x - 3 = 20
    • 8x = 16
    • x/7 = 5
  • Solve for y:
    • 8 + y = 28
    • y - 4 = 12
    • 3y = 15
    • y/8 = 2
Answers to Sample Problems:
  • a
    • 5 + a = 7
      • a = 7 - 5
      • a = 2
    • a - 13 = 4
      • a = 4 + 13
      • a = 17
    • 3a = 9
      • a = 9/3
      • a = 3
    • a/2 = 10
      • a = 10(2)
      • a = 20
  • b
    •  9 + b = 15
      • b = 15 - 9
      • b = 6
    • b - 2 = 1
      • b = 1 + 2
      • b = 3
    • 2b = 2
      • b = 2/2
      • b = 1
    • b/3 = 4
      • b = 4(3)
      • b = 12
  • c
    • 6 + c = 13
      • c = 13 - 6
      • c = 7
    • c - 3 = 2
      • c = 2 + 3
      • c = 5
    • 2c = 20
      • c = 20/2
      • c = 10
    • 6/c = 3
      • c = 3(6)
      • c = 18
  • x
    • 2 + x = 24
      • x = 24 - 2
      • x = 22
    • x - 3 = 20
      • x = 20 + 3
      • x = 23
    • 8x = 16
      • x = 16/8
      • x = 2
    • x/7 = 5
      • x = 5(7)
      • x = 35
  • y
    • 8 + y = 28
      • y  = 28 - 8
      • y = 20
    • y - 4 = 12
      • y = 12 + 4
      • y = 16
    • 3y = 15
      • y = 15/3
      • y = 5
    • y/8 = 2
      • y = 2(8)
      • y = 16

No comments:

Post a Comment